SECTIONALLY PSEUDOCOMPLEMENTED RESIDUAL LATTICE

Rahman, Md. Zaidur
Daffodil International University

http://hdl.handle.net/20.500.11948/547
Downloaded from http://dspace.library.daffodilvarsity.edu.bd, Copyright Daffodil International University Library
SECTIONALLY PSEUDOCOMPLEMENTED RESIDUAL LATTICE

Md. Zaidur Rahman 1, Md. Abul Kalam Azad 1 and Md. Nazmul Hasan. 2
Dept. of Mathematics1
Khulna University of Engineering and Technology
Dept. of Mathematics2
Moheshpur Govt. College, Moheshpur, Jhenaidah.
E-mail mzrahman1968@gmail.com, azadmath.azad8@gmail.com

Abstract : At first, we recall the basic concept, By a residual lattice is meant an algebra $L = (L; \lor, \land, *, o, 1, 0)$ such that

(i) $L = (L; \lor, \land, 0, 1)$ is a bounded lattice,
(ii) $L = (L; *, 1)$ is a commutative monoid,
(iii) it satisfies the so-called adjoinness property:

$$y \land y \lor x \Rightarrow y \land z \land x \Rightarrow$$

Let us note [7] that $x \lor y$ is the greatest element of the set $(x \lor y) \land z = y$

Moreover, if we consider $x \land y = x \lor y$, then $x \land y$ is the relative pseudo-complement of x with respect to y, i.e., for $* = \land$ residuated lattices are just relatively pseudo-complemented lattices. The identities characterizing sectionally pseudo-complemented lattices are presented in [3] i.e. the class of these lattices is a variety in the signature $\{ \lor, \land, 0, 1 \}$. We are going to apply a similar approach for the adjoinness property:

Key words: Residuated lattice, non Distributive, Residuated Abelian, commutative monoid:

1. Introduction
Residuated lattices were introduced by Ward and Dilworth [5] and studied by several authors. Two monographs contain a compendium on residuated lattices. They are that by Blyth and Janowitz [1] (where it is renamed as a residuated Abelian semi-group with a unit) and the book by R. Belohavek [7]. In this short note we will compare a certain modification of a residuated lattice with already introduced [2], [3]. At first, we recall the basic concept:

Definition 1. A lattice $L = (L; \lor, \land, 0, 1)$ with the greatest element 1 is sectionally pseudo-complemented if each interval $[y, 1]$ is a pseudo-complemented lattice.

From now on, denote by $x \lor y$ the pseudo-complement of $x \lor y$ in the interval $[y, 1]$.

Naturally, $x \lor y \in [y, 1]$ thus $L = (L; \lor, \land, 0, 1)$ is sectionally pseudo-complemented if and only if "o" is an (everywhere defined) operation on L.

Definition 2. An algebra $L = (L; \lor, \land, *, o, 1)$ is called a sectionally residuated lattice if

(i) $L = (L; \lor, \land, 0, 1)$ is a lattice with the greatest element 1;
(ii) $L = (L; *, 1)$ is a commutative monoid ;
(iii) it satisfies the sectional adjoinness property: $(x \lor y) \land z = y$ if and only if $y \leq z \leq x \land y$

Lemma 1.1 Let $L = (L; \lor, \land, *, o, 1)$ be a sectionally residuated lattice. Then $x \land y$ is the greatest element of the set $(x \land y) \lor z = y$

This immediately yields the following facts:

$$\begin{align*}
(x \lor y) \lor (x \land y) &= y, \\
(x \lor y) \lor y &= y, \\
y \leq x \land y,
\end{align*}$$

Lemma 1.2 Let $L = (L; \lor, \land, *, o, 1)$ be a sectionally residuated lattice. Then $x \lor y$, if and only if $x \land y = 1$

Proof: Suppose $x \leq y$, Then $x \lor y = y$, and by Lemma 1.1, $x \land y$ is the greatest element of the set $(x \lor y) \land z = y$ By Definition 2, $x \land y = 1$ thus $x \land y = 1$. Conversely,

Suppose $x \land y = 1$. Then, by [1], we have $y = (x \lor y) \lor (x \land y) = (x \lor y) \lor 1 = x \lor y$
whence \(x \leq y \)

Lemma 1.3 In a sectionally residuated lattice, the following identities are satisfied:

\[1 \circ x = x \]

Proof: The first three identities follow directly by Lemma 1.2. Further, by Lemma 1.1,

\[1 \circ x \]

is the greatest element of the set \(\{ z ; 1 \circ z = x \} \) thus \(1 \circ x = x \)

Lemma 1.4 In a sectionally residuated lattice, \(a \ast b = a \) if and only if \(a = b \)

Proof: Putting \(x = y = a \) and \(z = b \) in the sectional adjointness property, the assumption \(a \ast b = a \) yields \((a \vee a) \ast b \) iff \(a \leq b \leq a \circ a = 1 \) thus \(a \leq b \)

Conversely, \(a \leq b \) implies by Lemma 3 \(a \leq b \leq 1 = a \circ a \) and, by sectional adjointness, \(a \ast b = (a \vee a) \ast b = a \)

Applying Lemma 1.2 and Lemma 1.4, we get

Corollary 1.5 In a sectionally residuated lattice,

(a) \(x \ast y = x \) if and only if \(x \circ y = 1 \);

(b) \(x \ast x = x \)

Lemma 1.6 In a sectionally residuated lattice, \(x \land y \leq x \ast y \).

Proof: By [3] we have \(x \land y \leq x \circ (x \land y) \). Applying sectional adjointness, we infer \(x \ast (x \land y) = (x \lor (x \land y)) \ast (x \land y) \) and, analogously, \(y \ast (x \land y) = x \land y \). Hence, by Corollary 1.5 (b),

\[x \ast y \ast (x \land y) = x \ast (x \land y) \ast y \ast (x \land y) = (x \land y) \ast (x \land y) = x \land x \]

and by Lemma 1.4, \(x \land y \leq x \ast y \).

Theorem 1.7 Let \(L = (L; \lor, \land, \ast, \circ, \leq) \) be a sectionally residuated lattice. Then it is a sectionally pseudo-complemented lattice.

Proof: Replacing \(y \) by \(x \land y \) in the sectional adjointness property, we obtain \(x \ast z = x \land y \iff x \land y \leq z \leq x \circ (x \land y) \).

However, \(x \circ (x \land y) \) is the greatest element of the set \(\{ t ; (x \lor (x \land y)) \ast t = x \land y \} = \{ t ; x \ast t = x \land y \} \).

By Lemma 1.4, \(x \land t \leq x \ast t = x \land y \), thus the greatest \(t \) of this property satisfies \(t \geq y \).

Thus \(y \leq x \circ (x \land y) \), i.e., \(x \land y \leq y \leq x \circ (x \land y) \) and by the sectional adjointness, \(x \ast y = (x \land (x \lor y)) \ast y = x \land y \).

Hence, \(x \circ y \) is the pseudo-complement of \(x \lor y \) in the interval \([y, l]\).

2. Conclusion

It is well known that every relatively pseudo-complemented lattice is distributive. An extension of relative pseudo-complementation for the non-distributive case was already involved in [3], [4]:

References

